If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2-14b+8=-10
We move all terms to the left:
b^2-14b+8-(-10)=0
We add all the numbers together, and all the variables
b^2-14b+18=0
a = 1; b = -14; c = +18;
Δ = b2-4ac
Δ = -142-4·1·18
Δ = 124
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{124}=\sqrt{4*31}=\sqrt{4}*\sqrt{31}=2\sqrt{31}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-14)-2\sqrt{31}}{2*1}=\frac{14-2\sqrt{31}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-14)+2\sqrt{31}}{2*1}=\frac{14+2\sqrt{31}}{2} $
| 6x-2x+3=x-2+5 | | 18-3x=3(3x+1)+3 | | 263+48+t=553 | | X+3+3x=3x+5 | | 15y÷3y= | | 4x=-26-9x | | -3q10=6 | | 3a-6+2a=4(a-3) | | 12+.2x=x | | -4x^2+5.4x+18.5=0 | | 3+5x=4x+5 | | -2(x-2)=3x+6 | | X2-4y2-16=0 | | 5g+4g(-5+3g)=1-g | | -5w=75 | | 30-35r=170 | | 10x+6=14x-18 | | 1/2x+1/4=2/3x-1/5 | | 25+9y-2+12y=81 | | 7x-2x=-42 | | 8+4n=19+3n | | 6(c-6)=66 | | 7x^2-10=55 | | -10.2z-15.79=-5.15-9.5z | | 4(4x+5)=18x+17-2x+3 | | 16f-8+3f-9=9f-6+11 | | 9u=-2u+7 | | -93=-3-6-6n | | 2/3x-3x=-21 | | -13b-1=-14b-20 | | 2y+22/16y=190 | | 9x-14=-3x^2 |